数学论文_加权模块度增量引导下的层次社区发现
05-16文章摘要:模块度优化层次社区发现算法可以快速挖掘网络中不同密度的社区,对研究网络的功能和演化机制具有重要意义。然而,由于在迭代过程中仅合并模块度增量最大的社区,其收敛速度受到了制约;此外,在社区合并过程中过度强调社区之间的连接强度而忽略了社区之间的相似性,其划分结果的准确度也受到了制约。针对以上问题,提出了加权模块度增量引导下的层次社区发现算法。该算法引入了社区相似度权重,并结合模块度增量构建加权模块度增量,通过优化加权模块度增量划分层次社区;同时,在社区划分过程中引入可调合并阈值,动态调整每轮迭代中合并的社区数量,以优化算法的收敛速度。在不同规模的真实数据集和人工数据集上的实验结果验证了本文方法的正确性和有效性。
文章关键词:
论文作者:张霄宏 郝浩宇 任杰成 王海涛
作者单位:河南理工大学计算机科学与技术学院
论文DOI:10.20009/j.cnki.21-1106/TP.2021-0808
论文分类号:O157.5

